gA	Semester 1		Schuljahr	Wochenstunden
			2024/2025	3
Fach: Mathematik		Lernbereich:		
Kursthema: Analytische Geometrie I		Raumanschauung und Koordinatisierung		

- Punkte und Vektoren in Ebene und Raum
- bildliche Darstellung und Koordinatisierung zur Beschreibung von Punkten, Strecken, ebenen Flächen und einfachen Körpern
- Addition, Subtraktion und skalare Multiplikation
- Kollinearität zweier Vektoren
- Orthogonalität zweier Vektoren
- Geraden- und Ebenengleichungen in Parameterform
- Lagebeziehungen von Geraden und Schnittpunkte
- Winkelgrößen zwischen Strecken und Geraden
- Abstände zwischen Punkten
- geometrische Deutung des Skalarprodukts als Ergebnis einer Projektion

gA	Semester 2	Schuljahr 2024/2025	Wochenstunden 3	
Fach: Mathematik Kursthema: Analysis I		Lernbereiche: Kurvenanpassung; Von der Änderung zum B e-Funktion	Kurvenanpassung; Von der Änderung zum Bestand – Integralrechnung;	

- Bedingungen für den Term einer Funktion gemäß in Sachkontexten gegebenen Eigenschaften
- Bedingungen für den Term einer Funktion gemäß gegebenen lokalen und globalen Eigenschaften des Graphen
- Ermittlung von Funktionstermen anhand von Bedingungen
- algorithmisierbares Verfahren zur Lösung linearer Gleichungssysteme
- Variation eines Parameters zur Anpassung an eine vorgegebene Eigenschaft
- (Re-)Konstruktion von Beständen aus Änderungsraten und Anfangsbestand
- Integral als Grenzwert von Produktsummen
- geometrisch-anschauliche Begründung des Hauptsatzes der Differential- und Integralrechnung
- Stammfunktionen zu $f(x) = x^n$; $n \in \mathbb{Z} \setminus \{-1, 0\}$, $f(x) = e^x$, $f(x) = \sin(x)$ und $f(x) = \cos(x)$
- Stammfunktionen mit Kettenregel bei linearer innerer Funktion sowie mit Summen- und Faktorregel
- Prüfung von Stammfunktionen mithilfe der Ableitungsregeln
- bestimmte Integrale Berechnung und Deutung im Sachzusammenhang
- Inhalte von Flächen, die durch Funktionsgraphen begrenzt sind
- Produktregel und Kettenregel bei linearer innerer Funktion
- allgemeine Exponentialfunktionen mit Parametervariation
- natürliche Exponentialfunktionen und ihre Ableitungen
- Exponentialgleichungen
- einfache Fälle additiver und multiplikativer Verknüpfungen von e-Funktionen mit ganzrationalen Funktionen
- Verkettung von e-Funktionen mit linearen Funktionen
- Parameterbestimmungen zur Angleichung an Daten
- Beschreibung der Wachstumsgeschwindigkeit bei exponentiellem Wachstum als proportional zum Bestand
- Beschreibung des asymptotischen Verhaltens des begrenzten Wachstums

gA	Semester 3		Schuljahr	Wochenstunden
			2025/2026	3
Fach: Mathematik			Lernbereich:	
Kursthema: Stochastik I		Daten und Zufall		

- Zählprinzipien (Genaueres siehe Hinweise zur schriftlichen Abiturprüfung 2026)
- bedingte Wahrscheinlichkeit mit Baumdiagrammen und Vierfeldertafeln; bedingendes vs. bedingtes Ereignis
- stochastische Unabhängigkeit von Teilvorgängen mehrstufiger Zufallsexperimente
- Zusammenhang zwischen Kenngrößen der Häufigkeitsverteilung und der Wahrscheinlichkeitsverteilung
- Erwartungswert, Varianz und Standardabweichung
- faire Spiele
- Binomialverteilung: Eignung des Modells
- Beziehung zwischen Häufigkeitsverteilungen und Binomialverteilungen
- Zufallsgröße sowie Parameter n und p der Binomialverteilung im Sachkontext
- Bedeutung der Faktoren im Term $\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$
- Wahrscheinlichkeiten für binomialverteilte Zufallsgrößen
- Erwartungswert und Standardabweichung der Binomialverteilung
- Deutung grafischer Darstellungen von Binomialverteilungen im Hinblick auf Parameter und Kenngrößen
- Prognoseintervalle grafische oder tabellarische Ermittlung und Interpretation
- Verträglichkeit eines vorgegebenen Anteils der Grundgesamtheit bzw. eines vorgegebenen Werts des Parameters p mit einer gegebenen Stichprobe
- Simulationen zur Untersuchung stochastischer Situationen

gA	Semester 4	Schuljahr 2025/2026	Wochenstunden 3	
Fach: Mathematik		Lernbereiche:	Lernbereiche:	
Kursthema: Analytische Geometrie/		Vertiefungen zu al	Vertiefungen zu allen Lernbereichen	
Analysis/Stochastik II				

Analytische Geometrie

anwendungsbezogene Aufgaben zur Vektorrechnung

Analysis

- Wiederholung $f(x) = \sin(x)$, $f(x) = \ln(x)$ und $f(x) = \sqrt{x}$ mit Verschiebungen/Streckungen/Spiegelungen
- anwendungsbezogene Aufgaben zur Analysis

Stochastik

anwendungsbezogene Aufgaben zur Wahrscheinlichkeitsrechnung und Statistik