eA	Semester 1		Schuljahr	Wochenstunden
			2024/2025	5
Fach: Mathematik		Lernbereich:		
Kursthema: Analytische Geometrie I			Raumanschauung und Koordinatisierung	

- Punkte und Vektoren in Ebene und Raum
- bildliche Darstellung und Koordinatisierung zur Beschreibung von Punkten, Strecken, ebenen Flächen und einfachen Körpern
- Addition, Subtraktion und skalare Multiplikation von Vektoren
- Gauß-Algorithmus zur Lösung linearer Gleichungssysteme
- Kollinearität zweier Vektoren
- Orthogonalität zweier Vektoren
- Geraden- und Ebenengleichungen in Parameterform
- Lagebeziehungen von Geraden, Geraden und Ebenen sowie von Ebenen; Schnittprobleme
- Ebenengleichungen in Normalen- und Koordinatenform
- Winkelgrößen
- Abstände zwischen Punkten, Geraden und Ebenen
- geometrische Deutung des Skalarprodukts als Ergebnis einer Projektion

eA	Semester 2	Schuljahr 2024/2025	Wochenstunden 5	
Fach: Mathematik Kursthema: Analysis I		Wachstumsmodelle – Exp	Lernbereiche: Kurvenanpassung und Funktionsscharen; Wachstumsmodelle – Exponentialfunktion; Von der Änderung zum Bestand – Integralrechnung	

- Klassifizierung von Funktionen nach globalen Eigenschaften
- Ermittlung von Funktionstermen aus vorgegebenen lokalen Eigenschaften des Graphen einer Funktion
- Stetigkeit und Differenzierbarkeit zur Synthese und Analyse abschnittsweise definierter Funktionen
- Anpassung von Funktionen an Daten
- Produkt- und Kettenregel
- allgemeine Exponentialfunktionen mit Parametervariation
- natürliche Exponentialfunktionen und ihre Ableitungen
- Exponentialgleichungen
- Verkettung und Verknüpfung von e-Funktionen mit ganzrationalen Funktionen
- asymptotisches Verhalten bei additiver Verknüpfung linearer Funktionen mit e-Funktionen
- begrenztes und logistisches Wachstum
- Vergleich von Wachstumsmodellen
- Scharen ganzrationaler Funktionen und von Verkettungen der e-Funktion mit ganzrationalen Funktionen
- Ermittlung von Scharparametern, auch zur Angleichung an Daten
- (Re-)Konstruktion von Beständen aus Änderungsraten und Anfangsbestand
- Integral als Grenzwert von Produktsummen
- geometrisch-anschauliche Begründung des Hauptsatzes der Differential- und Integralrechnung
- Stammfunktionen zu $f(x) = x^n$ ($n \in \mathbb{Z} \setminus \{-1; 0\}$), $f(x) = e^x$, $f(x) = \sin(x)$ und $f(x) = \cos(x)$
- In-Funktion als Stammfunktion der Funktion f mit $f(x) = \frac{1}{x}$; x > 0
- Stammfunktionen mit Kettenregel bei linearer innerer Funktion, sowie mit Summen- und Faktorregel
- Prüfung von Stammfunktionen mithilfe der Ableitungsregeln
- bestimmte Integrale
- Inhalte von Flächen, die durch Funktionsgraphen begrenzt sind
- Integralfunktionen als Bestands- oder Flächeninhaltsfunktion

eA	Semester 3	Schuljahr 2025/2026		Wochenstunden 5
Fach:	Mathematik		Lernbereich:	
Kursthema: Stochastik I		Daten und Zufall		

- Zählprinzipien (Genaueres siehe Hinweise zur schriftlichen Abiturprüfung 2026)
- bedingte Wahrscheinlichkeit mit Baumdiagrammen und Vierfeldertafeln; bedingendes vs. bedingtes Ereignis
- Zusammenhang zwischen Unabhängigkeit und bedingten Wahrscheinlichkeiten
- kausale vs. stochastische Unabhängigkeit
- Zusammenhang zwischen Kenngrößen der Häufigkeitsverteilung und der Wahrscheinlichkeitsverteilung
- Erwartungswert, Varianz und Standardabweichung
- faire Spiele
- Binomialverteilung: Eignung des Modells
- Beziehung zwischen Häufigkeitsverteilungen und Binomialverteilungen
- Zufallsgröße sowie Parameter n und p der Binomialverteilung im Sachkontext
- Bedeutung der Faktoren im Term $\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$
- Wahrscheinlichkeiten für binomialverteilte Zufallsgrößen
- Erwartungswert und Standardabweichung der Binomialverteilung
- Deutung grafischer Darstellungen von Binomialverteilungen im Hinblick auf Parameter und Kenngrößen
- Prognoseintervalle
- Verträglichkeit eines vorgegebenen Anteils der Grundgesamtheit bzw. eines vorgegebenen Werts des Parameters p mit einer gegebenen Stichprobe
- Binomialverteilung als näherungsweises Modell für weitere stochastische Situationen
- Simulationen zur Untersuchung stochastischer Situationen
- Konfidenzintervalle für den Parameter p der Binomialverteilung
- Erläuterung der Intervallgrenzen von Konfidenzintervallen als zufällige Größen
- Sicherheitswahrscheinlichkeit als relative Häufigkeit, mit der Konfidenzintervalle bei Verwendung der Normalverteilung den wahren Wert überdecken
- diskrete vs. stetige Zufallsgrößen
- Erläuterung der Notwendigkeit von Histogrammen
- Erläuterung der Parameter der Normalverteilung und Nutzung in Sachkontexten
- Beurteilung der Angemessenheit der Approximation der Binomialverteilung durch die Normalverteilung
- Simulation stochastischer Situationen, die zu annähernd normalverteilten Zufallsgrößen führen

eA	Semester 4	Schuljahr	Wochenstunden	
		2025/2026	5	
Fach:	Mathematik	Lernbereiche:		
Kursthema: Analytische Geometrie/		Vertiefungen zu allen Ler	Vertiefungen zu allen Lernbereichen	
Analysis/Stochastik II				

Analytische Geometrie

anwendungsbezogene Aufgaben zur Vektorrechnung

Analysis

- Differentialgleichungen zur Beschreibung von Wachstumsmodellen; Prüfung möglicher Lösungsfunktionen
- Rotationskörper
- Wiederholung $f(x) = \sin(x)$, $f(x) = \ln(x)$ und $f(x) = \sqrt{x}$ mit Verschiebungen/Streckungen/Spiegelungen
- Umkehrfunktionen (Genaueres siehe Hinweise zur schriftlichen Abiturprüfung 2026)
- anwendungsbezogene Aufgaben zur Differential- und Integralrechnung, insbesondere mit Funktionenscharen, zu allen Funktionenklassen der Sek-I und Sek-II

Stochastik

• anwendungsbezogene Aufgaben zur Wahrscheinlichkeitsrechnung und Statistik